If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-34x-289=0
a = 2; b = -34; c = -289;
Δ = b2-4ac
Δ = -342-4·2·(-289)
Δ = 3468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3468}=\sqrt{1156*3}=\sqrt{1156}*\sqrt{3}=34\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-34\sqrt{3}}{2*2}=\frac{34-34\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+34\sqrt{3}}{2*2}=\frac{34+34\sqrt{3}}{4} $
| x+3x-16=136 | | -9q+18q+-12q+q=16 | | 9d-2d=7 | | 9(h-87)=45 | | k^2+5k=6=0 | | c+c-c=9 | | 3(q-82)=24 | | t(4)=15 | | 6(c+3)=90 | | 2t-2t+2t-2t+t=12 | | 0.3x=41.1 | | 6x+3=-2(3x+2) | | 16q-18q+20q-12q=-18 | | 1.50x+22.50=126 | | y/10+6=11 | | 3+13z=13z+7 | | 7m^-m-13=9 | | -8r-2r+-5r+10r=10 | | (x)+(4x-5)=180 | | -22=4x-6 | | v+17/8=3 | | 9g+12g-18g=-12 | | 97=-4(-2p-8)+5p | | 9x^-7x-3=11 | | v+v=18 | | 0.3x+138.9=180 | | 3x-15=(x/2)+5 | | 7.7x+12=8-9x | | 3.50(3.20-x)=63.70-5.40x | | -8(b-80)=-72 | | 3x+2+3x+2=60 | | 3.50(3.20-x)=63.70-5.40 |